

HFpEF Masterclasses in centers of expertise

FRANCE

7th November 2024 - DAY 1 8th November 2024 - DAY 2

Exercise explorations in HFpEF

Jean-Christophe EICHER

CHU de DIJON

Disclosures

☑ I have the following potential disclosure to report

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- Alnylam
- Amgen
- AstraZeneca
- Bayer
- Boehringer
- Corvia
- Novartis
- Pfizer
- Vifor

Table 3Definition of heart failure with reduced ejection fraction, mildly reduced ejection fraction and preserved ejectionfraction

Type of HF		HFrEF HFmrEF		HFpEF		
₹	1	Symptoms ± Signs ^a	Symptoms ± Signs ^a	Symptoms ± Signs ^a		
ER	2	LVEF ≤40%	LVEF 41-49% ^b	LVEF ≥50%		
RIT	3	-	-	Objective evidence of cardiac structural and/or functional		
0				abnormalities consistent with the presence of LV diastolic		
				dysfunction/raised LV filling pressures, including raised natriuretic peptides $^{\circ}$		

Exercise assessments : why?

Diagnosis

- Most patients with HFpEF have symptoms mainly or only on exertion
- Haemodynamic abnormalities such as reduced stroke volume, reduced CO, and elevated LV filling pressures may be absent at rest

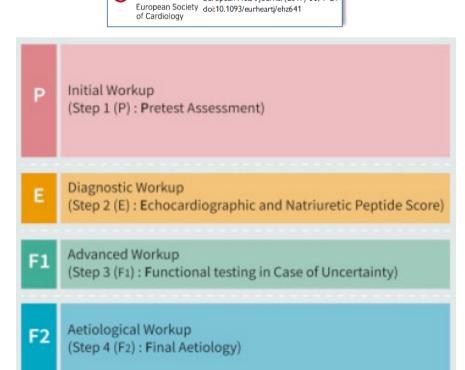
Aetiology

- Some causes or comorbidities may require specific managements
 - ► Ischaemia
 - Chronotropic incompetence
 - Arrhythmias
 - Hypertensive response

Follow-up

- Effects of treatments
- Detection of decline

Exercise assessments : when?


- The HFA-PEFF diagnostic algorithm
 - Step P : pre-test assessment
 - « Cardiopulmonary exercise testing provides objective evidence of exercise capacity and may differentiate between cardiac and non-cardiac causes (pulmonary, peripheral) for dyspnoea"

Step FI Functional testing

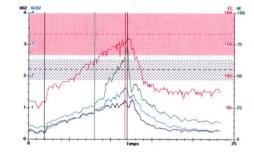
- "The absence of isolated cardiac structural and/or functional abnormalities at rest does not always diagnosis of HFpEF"
- "Assessment during exercise is recommended, either by non-invasive exercise stress echocardiography or by invasive haemodynamics"

Step F2 : aetiological workup

- « Aetiological workup may include a standard exercise stress test that may identify <u>myocardial</u> <u>ischaemia</u>, an <u>abnormal blood pressure response</u> to exercise, <u>chronotropic incompetence</u>, or supraventricular and ventricular <u>arrhythmias</u> »
- "These findings can immediately translate into management strategies, such as anti-ischaemic therapy, improved blood pressure control, removal of bradycardic agents (such as betablockers often prescribed for hypertension), and control of exercise-induced cardiac arrhythmias"

European Heart Journal (2019) 00, 1-21

ESC



Exercise assessments : how?

- Six-minute walking test
- Echocardiography (diastolic stress test)
- Cardiopulmonary exercise test (bicycle / treadmill)
- Imaging of ischaemia
- Right heart catheterization

N	s M	s A	
N			
h			

v	-	,	a			v
	-	h				
	MIV			4	\mathcal{A}	14

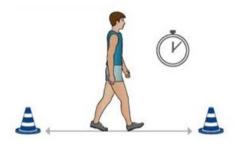
POSITION PAPER

ESC European Society of Cardiology

European Journal of Heart Failure (2022) 24, 1327–1345 y doi:10.1002/ejhf.2601

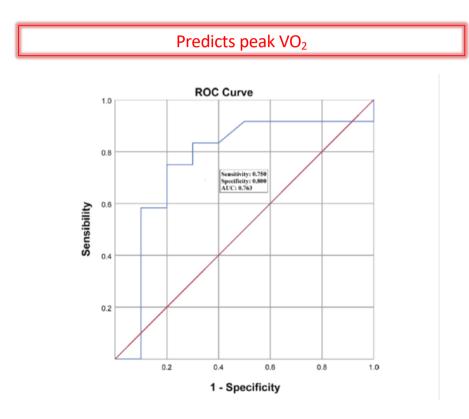
Exercise testing in heart failure with preserved ejection fraction: an appraisal through diagnosis, pathophysiology and therapy – A clinical consensus statement of the Heart Failure Association and European Association of Preventive Cardiology of the European Society of Cardiology

Marco Guazzi¹*, Matthias Wilhelm², Martin Halle^{3,4}, Emeline Van Craenenbroeck^{5,6}, Hareld Kemps^{7,8}, Rudolph A. de Boer⁹, Andrew J.S. Coats¹⁰, Lars Lund¹¹, Donna Mancini^{12,13}, Barry Borlaug¹⁴, Gerasimos Filippatos¹⁵, and Burkert Pieske^{16,17,18}

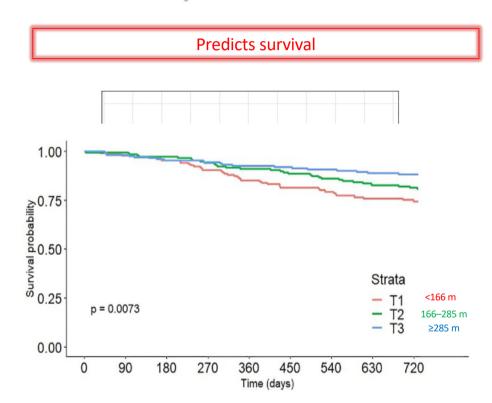

6-minute walk test

Strengths

- Iow cost and ease of use in daily practice
- may be used for serial therapeutic evaluations

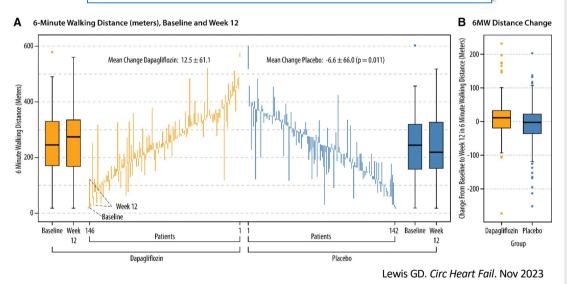

Weaknesses

- influenced by extracardiac factors (orthopaedic, neurologic...)
- limited diagnostic interest



6-minute walk test in HFpEF

Fig. 1 ROC curve for the comparison of the 6MWT and the CPET to detect severely reduced functional capacity (VO2max<14 mL/kg/min) Cut-off value 358.50 m. Cavero-Redondo *et al. Sports Medicine - Open* (2024)



Fujimoto Y. International Journal of Cardiology 379 (2023) 76-81



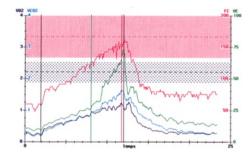
6-minute walk test in HFpEF : effects of treatments

Effect of Dapagliflozin on 6-Minute Walk Distance in Heart Failure With Preserved Ejection Fraction: PRESERVED-HF

Expert consensus on the monitoring of transthyretin amyloid cardiomyopathy

Garcia-Pavia P. Eur J Heart Fail (2021) 23, 895-905

Cardiopulmonary exercise test (CPET)


Strengths

- > gold standard technique to measure aerobic capacity
- determination of the principle organ system involved in exercise limitation
- detection of non-cardiac causes of dyspnoea
- well-established capacity to predict outcomes across the various HF phenotypes

Weaknesses

- elderly patients
- orthopaedic / neurologic / cognitive comorbidities

Causes of exercise limitation in HFpEF

The O2 cascade		HFPEF				
Critical steps	Organ	Limitations in O2 cascade		Pathophysiology		
Alveolar ventilation (VA)	A	alveolar O2 exchange ↓	Pulmonary Reserve ↓	Ventilatory reserve↓ (O2 alveolar diffusion ↓, respiratory muscl work ↑ Abnormal ventilatory regulation (ergoreflex ↑, EOV)		
Lung diffusion (DL)						
Hb	~	O2 delivery ↓	Anemia	Iron deficiency		
Cardiac output (CO)	K	O2 delivery 1	Cardiac reserve ↓	Cardiac output reserve 1 (Stroke volume 1, chronotropic incompetence) Atrial arrythmia's, inducibel myocardial ischemia, dynamic mitral regurgitation Impaired LV filling (myocardial relaxation 1, LA dyfunction) Pulmonary hypertension and RV dysfunction		
Vasodilatation	1 and the second	O2 delivery ↓	Vascular reserve 1	Arterial vasodilation 1, arterial stifness 1, abnormal ventriculovascular coupling		
Muscle diffusion (Dm)						
Mitochondrial respiration (vmax)	Ø	O2 diffusion and/or distraction ↓	Skeletal muscle dysfunction	Structural: capillary density1, intermuscular fat1, shift muscle fiber type Functional: anabolism1, mitochondria size and function1, oxidative capacity1, inflammation1		

Dyspnoea on exertion

Fick principle $VO_2 = CO \times (a - v O_2)$

Guazzi M. Eur J Heart Fail 2022

Causes of exercise limitation in HFpEF

Cardiac causes

- > Impaired myocardial performance and cardiac energetics
- Chronotropic incompetence (33-77%)
- > Left atrial myopathy and atrial functional mitral regurgitation

Systemic arterial and venous system abnormalities

- Vascular stiffening
- Endothelial dysfunction and impaired vasodilation
- Impairment in the venous capacitance
- Abnormal lung mechanics, pulmonary hypertension and vascular disease
- Muscle and mitochondrial pathology

Comorbidities

- Anaemia and iron deficiency
- Obesity

Cardiopulmonary exercise test

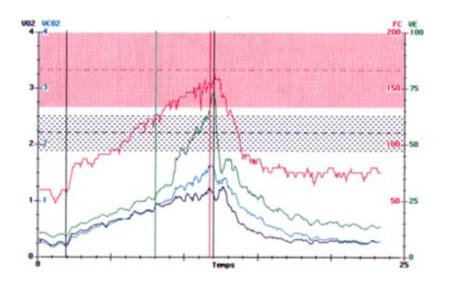
Prerequisite for interpretation

- Exercise duration 8-12 min
- Respiratory exchange ratio > 1.1
- accurate detection of ventilatory thresholds and slopes

Ventilatory limitation

reduction in breathing reserve (<15%)

Pulmonary vascular involvement


- significant elevation in VE/VCO₂ slope
- well-established prognostic role of VE/VCO₂ slope (>40)

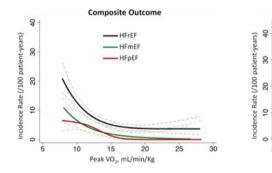
Typical cardiac limitation

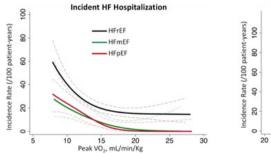
- Reduced O2 pulse (VO₂/HR)
- Chronotropic incompetence

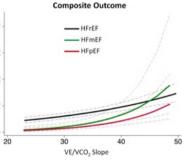
Diagnostic value

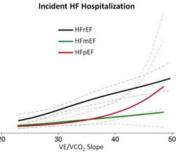
- peak VO₂ <14 ml/kg/min : HFpEF very likely</p>
- peakVO₂ >20 ml/kg/min : HFpEF very unlikely
- > 14-20 ml/kg/min : further testing with stress echo or exercise cath is required. (Guazzi M. European Journal of Heart Failure (2022) 24, 1327-1345)

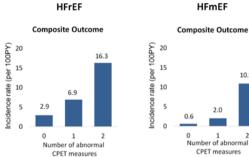
hm

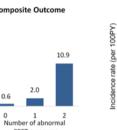

Journal of the American Heart Association /blume 6, Issue 11, November 2017 ttps://doi.org/10.1161/JAHA.117.005000

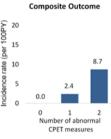

American Heart Association

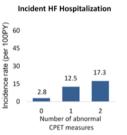

ORIGINAL RESEARCH

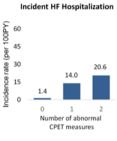

Prognostic Value of Cardiopulmonary Exercise Testing in Heart Failure With Reduced, Midrange, and Preserved **Ejection Fraction**


Wilson Nadruz, Jr, MD, PhD; Erin West, MSc; Morten Sengeløv, MB; Mário Santos, MD; John D. Groarke, MBBCh, MPH; Daniel E. Forman, MD; Brian Claggett, PhD; Hicham Skali, MD, MSc; Amil M. Shah, MD, MPH






1 Number of abnormal


CPET measures

(VG00

per

0

Abnormal CPET measures

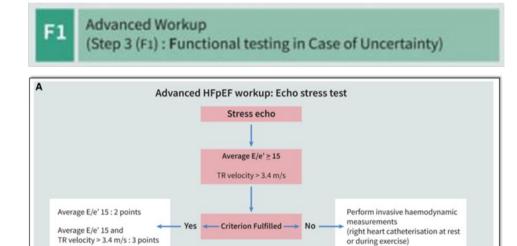
- Peak VO₂ <14 mL/kg/min
- VE/VCO₂ slope >30

Cardiopulmonary exercise testing variables provided greater risk discrimination in HFpEF than HFrEF

)HFpEF

HFpEF

Exercise echocardiography


- Step 3 (FI) of the HFA-PEFF recommendations
 - Patients with HFpEF may present with typical signs and symptoms, but without increased levels of NT-proBNP or resting LV diastolic impairment

Strengths

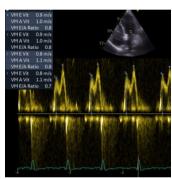
- allows the study of LV filling adaptations/maladaptations during dynamic exercise
- Simple measurements
 - Average E/e' ratio
 - TR velocity

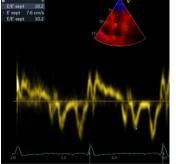
Weaknesses

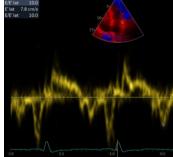
- Mitral E velocity may be difficult to measure in case of E and A overlap
- > TR velocity cannot be reliably assessed in approximately 30% of cases

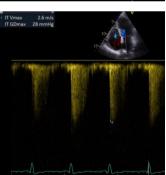
Case report 1

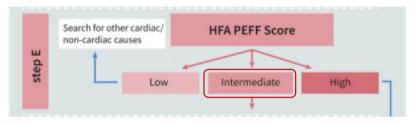
▶ 72 year-old woman

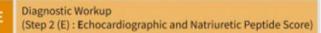

- BMI 28 kg/m²
- > Hypertension treated with irbesartan and amlodipine
- > Paroxysmal AF treated with apixaban and amiodarone
- NYHA II-III
- NT proBNP 215 pg/ml

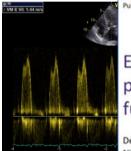

Echocardiography


- LVEF 64%
- GLS -19%
- LVMi 90 g/m², RVVT 0.4
- > Septal e' 7.6 cm/s, lateral e' 7.8 cm/s
- Average E/e' 10
- LA volume 32 ml/m²
- TR velocity 2.6 m/s



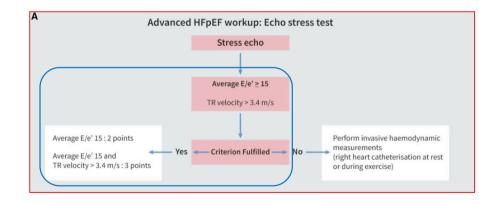





	Functional	Morphological	Biomarker (SR)	Biomarker (AF)			
Major	septal e' < 7 cm/s or lateral e' < 10 cm/s or Average E/e' ≥ 15 or TR velocity > 2.8 m/s (PASP > 35 mmHg)	LAVI > 34 ml/m ² or LVMI ≥ 149/122 g/m ² (m/w) and RWT > 0,42 #	NT-proBNP > 220 pg/ml or BNP > 80 pg/ml	NT-proBNP > 660 pg/ml or BNP > 240 pg/ml			
Minor	Average E/e' 9 -14 or GLS < 16 %	LAVI 29-34 ml/m ² or LVMI > 115/95 g/m ² (m/w) or RWT > 0,42 or LV wall thickness <u>></u> 12 mm	NT-proBNP 125-220 pg/ml or BNP 35-80 pg/ml	NT-proBNP 365-660 pg/ml or BNP 105-240 pg/ml			
Мајо	r Criteria: 2 points	≥ 5 points: HFpEF 2-4 points: Diastolic Stress Test or Invasive Haemodynamic Measurements					
Mino	r Criteria: 1 point						

Case report 1

Diastolic stress test 60 Watts


- Average E/e' 27
- TR velocity 3.6 m/s
- Bilateral pulmonary B lines

ESC HEART FAILURE ORIGINAL ARTICLE ESC Heart Failure 2021; 8: 5068–5080 Published online 16 October 2021 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ehf2.13575

Exercise-induced B-lines in heart failure with preserved ejection fraction occur along with diastolic function worsening

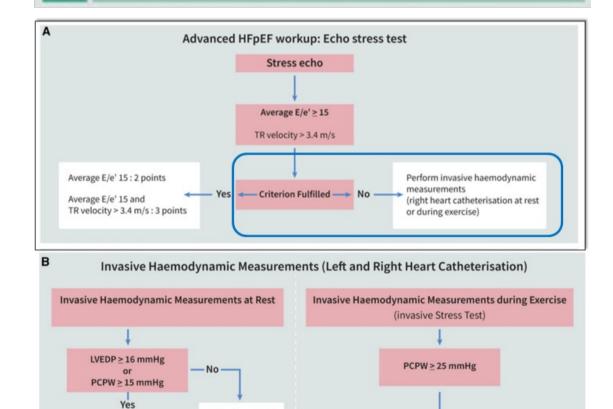
Dejan Simonovic^{1*}, Stefano Coiro^{2,3*}, Marina Deljanin-Ilic¹, Masatake Kobayashi^{3,4}, Erberto Carluccio⁵, Nicolas Girerd^{3,4} and Giuseppe Ambrosio^{5,6}*

European Society of Cardiology https://doi.org/10.1093/ehjci/jead007

ORIGINAL PAPER

Incremental diagnostic value of post-exercise lung congestion in heart failure with preserved ejection fraction

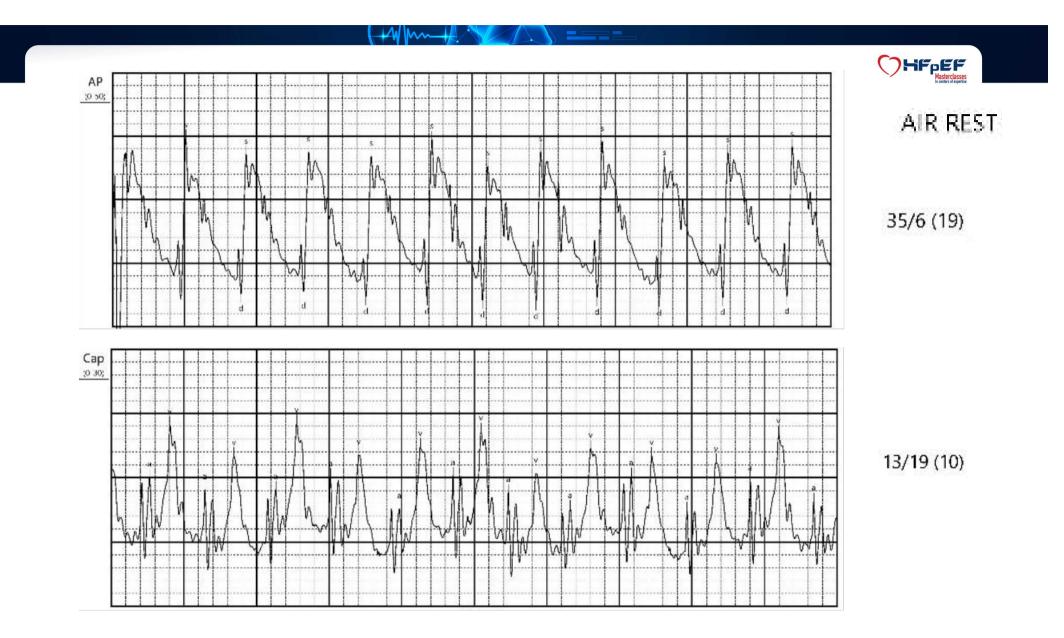
Kazuki Kagami^{1,2†}, Masaru Obokata [©] ¹*, Tomonari Harada^{1†}, Hidemi Sorimachi¹, Naoki Yuasa¹, Yuki Saito³, Toshimitsu Kato [©] ¹, Naoki Wada⁴, Takeshi Adachi², and Hideki Ishii¹

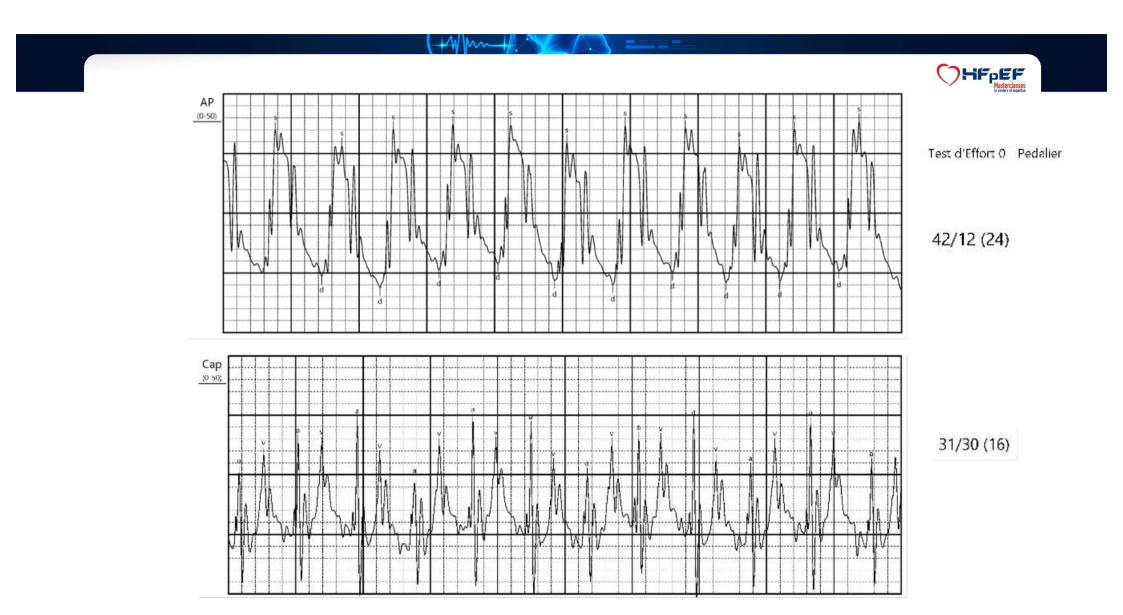


HFpEF

Invasive exercise test

- Invasive measurement of left ventricular filling pressures in the gold standard to confirm that symptoms are due to heart failure
- However, pressures may be normal at rest
- Impaired LV filling may be disclosed by fluid challenge or exercise

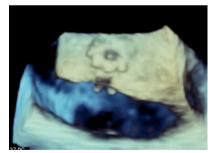

F1 Advanced Workup (Step 3 (F1) : Functional testing in Case of Uncertainty)



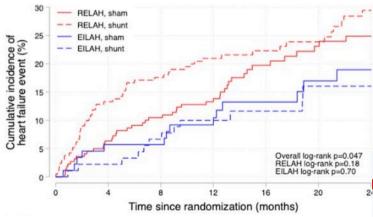
Echo Stress Test or

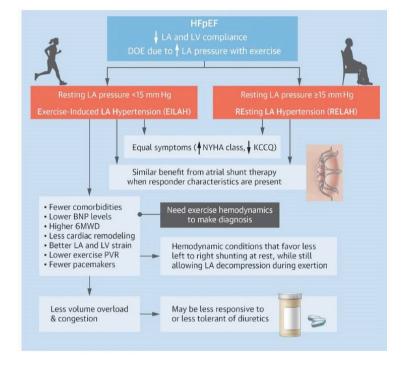
Invasive Stress Test

HFpEF



	Basal	Jambes surélevées	Effort 20W	Effort 40W	EFFORT MAX
Aorte (s/d-m) mmHg	132 / 68 - 101	135 / 68 - 101			136 / 66
OG (m/a-v) mmHg			5/8-9		
Cap (m/a-v) mmHg	10 7 13 - 19	16) 31 - 30	25) 43 - 42	28 /	35/
AP (s/d-m) mmHg	35 / 6 - 19	42 / 12 - 24	61 / 12 - 33	51 / 13 - 32	58 / 20 - 29
OD (m/a-v) mmHg	5 /7 - 8	5/8-9	6 / 14-17	10 / 14 - 17	4 / 12 - 15
Débit (I/min)	5,54				9,6
Débit (l/min/m ²)	3,4				5,8
RVS (dyn.s/cm5)	1386				
RVS index	2370,54				
(dyn.s/cm5/m²)					
RVP (dyn.s/cm5)	130				50
RVP index	222,24				85,5
(dyn.s/cm5/m²)					
RVP / RVS	0,09				





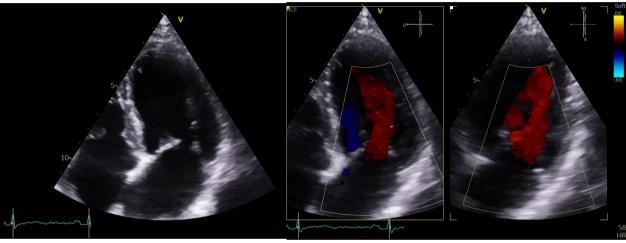
Exercise-Induced Left Atrial Hypertension in Heart Failure With Preserved Ejection Fraction

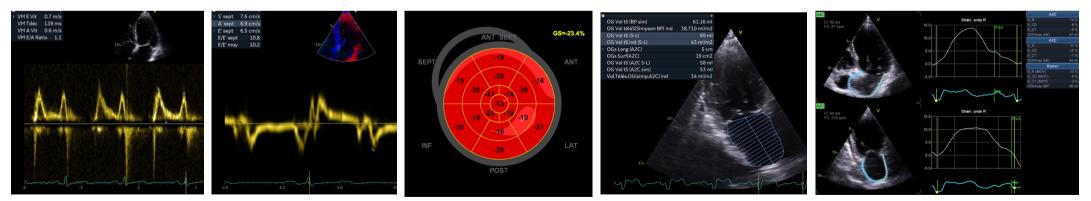
Sheldon E. Litwin, MD,^{a,b} Jan Komtebedde, DVM,^c Mo Hu, MS,^d Daniel Burkhoff, MD, PnD,^e Gerd Hasenfuß, MD,^f Barry A. Borlaug, MD,^e Scott D. Solomon, MD,^h Michael R. Zile, MD,^{a,b} Rajeev C. Mohan, MD,ⁱ Rami Khawash, MD,^j Aaron L. Sverdlov, MBBS, PnD,^{k-j} Peter Fail, MD,^m Eugene S. Chung, MD,ⁿ David M. Kaye, MD,^o John Blair, MD,^p Jean-Christophe Eicher, MD,^q Scott L. Hummel, MD,^{i,e} Andreas Zirlik, MD,^{*} Ralf Westenfeld, MD,^u Christopher Hayward, MD,⁷ Thomas M. Gorter, MD,^w Catherine Demers, MD,^{*} Ranjith Shetty, MD,⁷ Gregory Lewis, MD,^e Randall C. Starling, MD, MPH,^{aa} Sanjay Patel, MD,^{bb,cc,dd} Deepak K. Gupta, MD,^{ee} Hakim Morsli, MD,^{ff} Martin Penicka, MD,^{ae} Maja Cikes, MD, PnD,^{hh} Finn Gustafsson, MD,^{il} Frank E. Silvestry, MD,^{il} Ethan J. Rowin, MD,^{kb} Donald E. Cutlip, MD,^{il} Martin B. Leon, MD,^o Dalane W. Kitzman, MD,^{em} Franz X. Kleber, MD,^{im} Sanjiy J. Shah, MD,^d on behalf of the REDUCE LAP-HF Investigators and Research Staff


CONCLUSIONS Patients with EILAH had similar symptom severity but less advanced myocardial and pulmonary vascular disease. This important subgroup may be difficult to diagnose without invasive exercise hemodynamics, but it has characteristics associated with favorable response to atrial shunt therapy. (A Study to Evaluate the Corvia ²⁴ Medical, Inc. IASD System II to Reduce Elevated Left Atrial Pressure in Patients With Heart Failure [REDUCE LAP-HF TRIAL II]; NCT03088033) (J Am Coll Cardiol HF 2023; **=**: **=**-**=**) © 2023 by the American College of Cardiology Foundation.

Case report 2

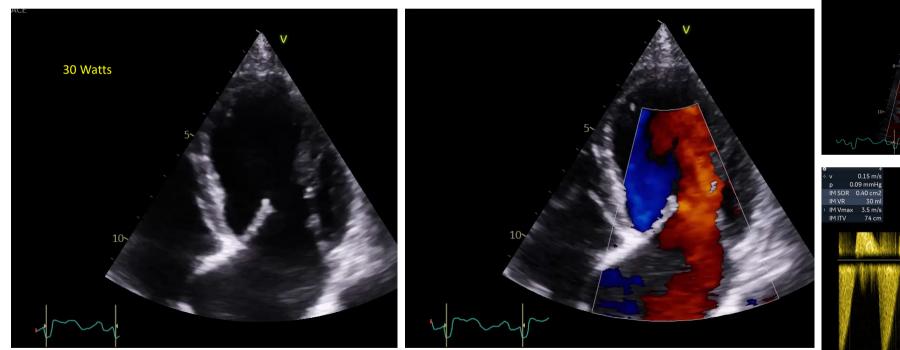
▶ 74 year-old woman

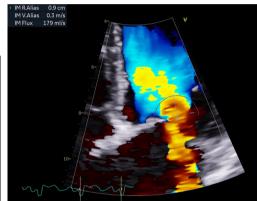

- BMI 21,6 kg/m²
- Hypercholesterolemia treated with rosuvastatin 10
- Intermittent LBBB
- LAD stenting 2022 (aspirin 75 mg, bisoprolol 2,5 mg)
- Paroxysmal exercise dyspnoea, normal coronary angiography
- NT-proBNP 413 pg/ml

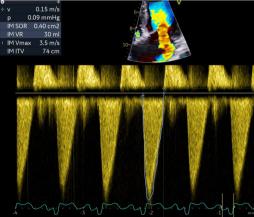


Case report 2

Echocardiography LVEF 71% GLS -23,4% Normal LVMi Septal e' 6.5 cm/s, Calculate Average E/e' 10.2 LA volume 38 ml/i HFA-PEFF Score: 6 **Diagnosis of HFpEF** Mild MR No TR







Case report 2

Exercise echocardiography

Take home messages

- Exercise explorations in HFpEF may be useful
 - 1. To assess the degree of functional impairment
 - 2. To look for differential diagnoses (respiratory causes, deconditioning)
 - 3. To confirm diagnosis
 - 4. To assess prognosis
 - 5. To refine treatment (ischaemia, chronotropic incompetence, hypertension)
 - 6. To improve follow-up