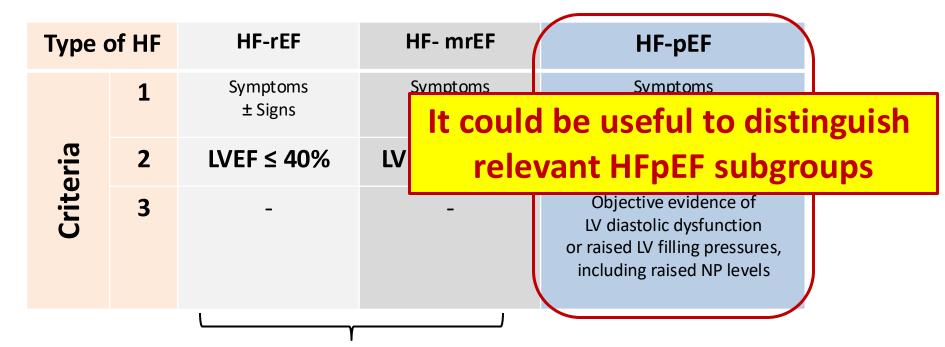
Phenomapping for the diagnosis of HFpEF

Pr Damien Logeart

Hôpital Lariboisière, AP-HP, Paris Université Paris Cité



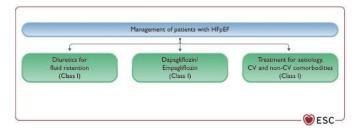
Disclosure of interests

Honorariums (speaker, advisory board, or consultancy fees)

- Abbott
- Alnylam
- AstraZeneca
- Boehringer Ingelheim
- BMS
- Novartis
- Novo Nordisk
- Pfizer

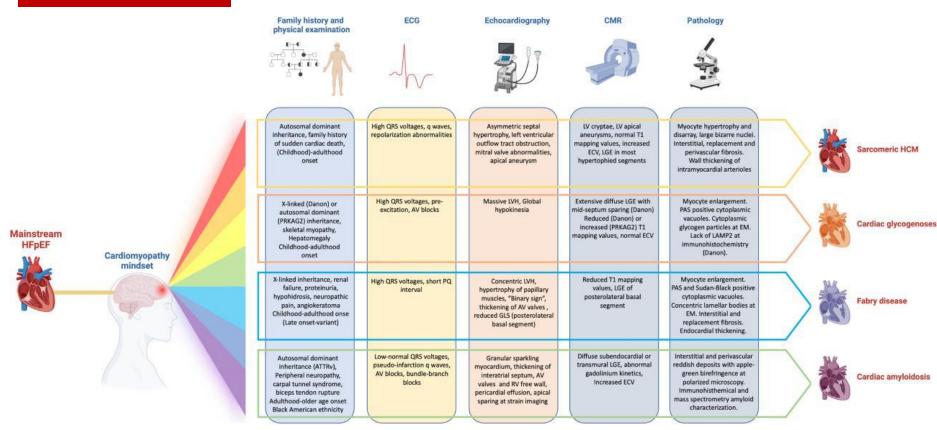
What is the issue?

(relatively) homogeneous pathophysiology

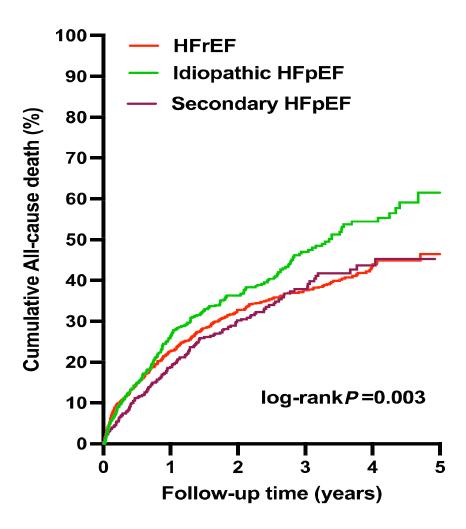


Strong evidence-based medicine for all of these patients

Herogeneous pathophysiology



Lack of evidence-based medicine



To look for cardiomyopathy/ secondary HFpEF

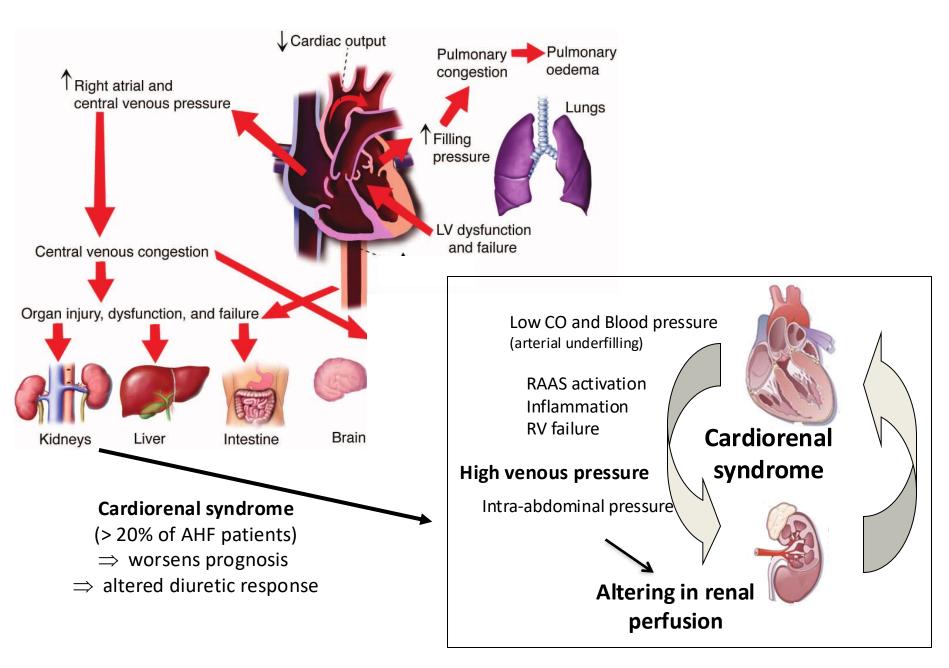
Keep in mind!

Aetiological classification and prognosis in patients with heart failure with preserved ejection fraction

Let's move on to new ways of classifying HF patients

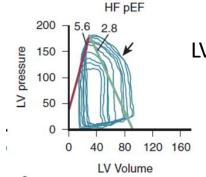
VIEWPOINT

Heart Failure



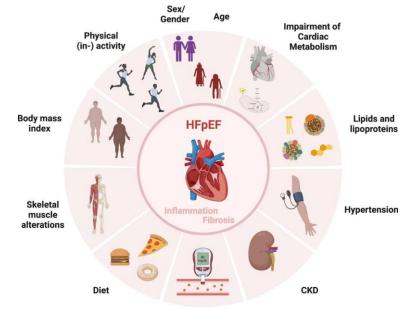
TNM-Like Classification

Francesco Fedele, MD, Paolo Severino, MD, Simone Calcagno, MD, Massimo Mancone, MD, PhD Rome, Italy


Heart	Lung	Malfunction of Other Organs			
H-1: impaired systolic or diastolic function of LV without structural damage H-2: LV with systolic or diastolic dysfunction and structural damage (hypertrophy, previous myocardial infarction)	L-0: no lung involvement L-1: Hemodynamic congestion L-2: Clinical congestion L-3: Cardiac lung*	M-0: no malfunction of other organs M-1: single organ damage due to HF M-2: double organ damage due to HF M-3: multiple organ damage			
 H-3: systolic and diastolic dysfunction (and/or EF< 35%) with left ventricular remodeling H-4: biventricular systolic and diastolic dysfunction 	Parameters of pulmonary damage: -Precapillary pulmonary hypertension (mPAP > 25mmHg; PAWP < 15mmHg) -Post-capillary pulmonary hypertension (mPAP > 25mmHg; PAWP > 15mmHg) -Pleural effusion -Pulmonary edema	Other Organs: - Kidney - Liver - Central nervous system			

HF and dysfunction of other organs

HFpEF: numerous and complex mechanisms => patient profiling taking into account this complexity



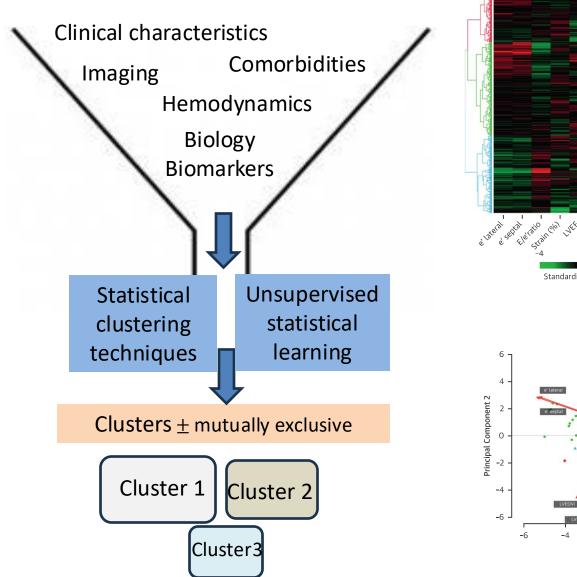
LV and vascular stiffness

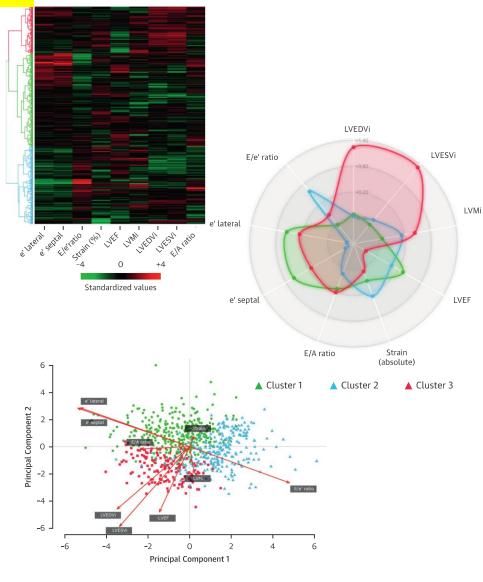
Endothelial dysfunction

Comorbidities

Diabetes

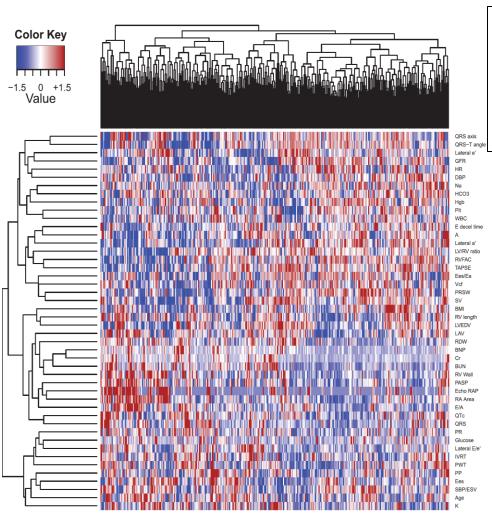
Atrial myopathy


Chronotropic incompetence


Dysfunction of other organs

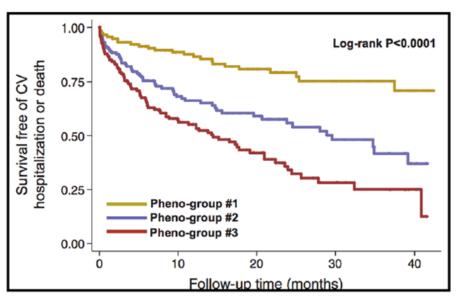
HFpEF and phenomapping (clustering)

New paradigm: data driven statistical analysis



HFpEF and phenomapping (or clustering)

397 HFpEF patients, 67 variables


=> Hierarchical clustering analysis

1: younger, lower BNP, less LVH and DD

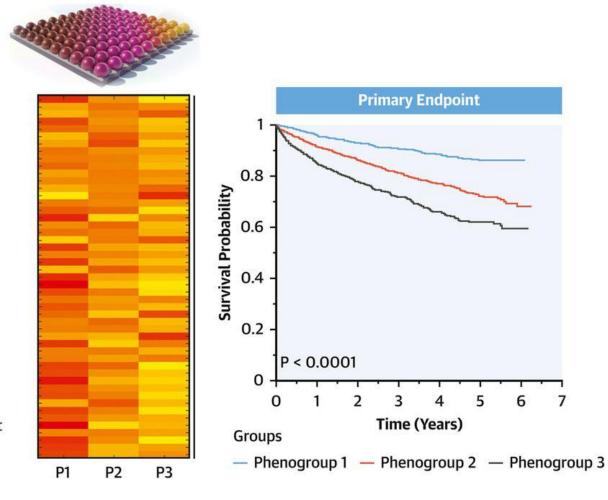
2: most DM, obesity, OSA, lowest e', highest PCWP

3: older, highest BNP, worst CKD, most electrical and echo changes, highest E/e', RV dysfunction

Shah et al. Circulation 2015; 131

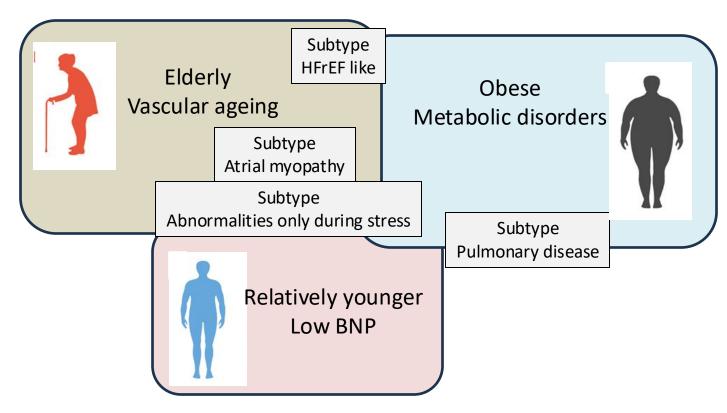
HFpEF and phenomapping

Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction Detailed Phenotypes, Prognosis, and Response to Spironolactone


- Normal LV geometry
- · Low arterial stiffness
- Low natriuretic peptides
- Markers of COPD (not genuine HFpEF?)
- Low event rate
- Preferentially enrolled in Russia/Georgia

- · Concentric remodeling
- Very stiff arteries
- · LA enlargement and AF
- High natriuretric peptides
- Innate immunity activation
- · High risk of primary endpoint

- Obesity/Diabetes
- Inflammation (TNF-α)
- Abnormal metabolism, liver and renal injury/dysfunction
- · High renin
- · Highest risk of primary endpoint
- Preferential response to spironolactone



HFpEF and phenomapping

Table 1	Summary	of selected	HFpEF p	henomapping	studies and	data inputs
---------	---------	-------------	---------	-------------	-------------	-------------

Study .	Derivation	Derivation Validation				Data inputs								Differential outcomes
	Source	n	Source	n	<u>Clinical</u>	Basic Labs	Imaging	<u>Select</u> Biomarker	Large-scale 'Omics	ECG	Exercise data	<u>Invasive</u> <u>Hemodynamics</u>	identified	by group demonstrated
Shah et al. ¹	Sing l e-centre/ clinical	397	External	107	1	1	1	√NP	_	1	-	_a	3	✓
Kao et al. ¹⁰	I-PRESERVE trial	4113	External	3203	1	1	_	_	-	_	_	_	6	✓
Przewłocka-Kosmala et al. ¹¹	Single-centre/ clinical	177 ^b	n/a	n/a	-	-	✓	√Galactin-3	-	-	✓	-	3	√ c
Cohen et al. ¹²	TOPCAT trial	1765 ^d	n/a	n/a	1	_	_	_	-	_	_	-	3	✓
Segar et al. ¹³	TOPCAT Americas	654	Int/ext	1113/ 198	1	✓	✓	√NP	-	1	-	-	3	✓
Hedman et al.14	Multicentre registry	320	n/a	n/a	1	1	1	√NP	-	_	_	-	6	1
Schrub et al. ¹⁵	Multicentre registry		n/a	n/a	1	1	1	_	-	_	_	-	3	-
Stienen et al. ¹⁶	Multicentre registry	392	n/a	n/a	-	_	_	-	1	_	_	-	2	✓
Harada et al. ¹⁷	Single-centre/ clinical	350	Internal	133	1	1	1	-	-	-	-	-	4	✓
Arevalo-Lorido et al. ^{18,e}	Multicentre registry	1934	n/a	n/a	✓	✓	-	-	-	-	-	-	7	✓
Sabbah et al. ¹⁹	Multiple trials ^f	301	n/a	n/a	✓g	_	-	-	✓	-	_	-	3	✓
Uijl et al. ²⁰	Multicentre registry	6909	External	2153	1	1	_	-	-	_	_	-	5	✓
Gu et al. ²¹	Single-centre/ clinical	970	External	290	1	1	1	√NP	-	-	-	-	3	✓
Casebeer et al. ²²	Clinical/claims	1515	n/a	n/a	/	_	_	-	-	_	_	-	3	
Nouraei et al. ²³	Single-centre/ clinical	197	n/a	n/a	1	✓	1	-	-	-	-	-	6	✓
Wu et al. ²⁴	Multigenerational registry	125	n/a	n/a	_	-	-	-	1	-	-	-	2	✓
Woolley et al. ²⁵	Multicentre registry	429	n/a	n/a	_	_	_	_	1	_	_	_	4	✓
Hahn et al. ²⁶	Single-centre/ clinical	38	n/a	n/a	-	-	-	-	1	-	-	-	3	✓
Jones et al. ²⁷	Single-centre/ clinical	21 ^h	n/a	n/a	-	-	1	-	-	-	-	1	3	-
Fayol et al. ²⁸	Single-centre/ clinical	928	n/a	n/a	1	1	1	√NP	-	-	-	-	3	1

HFpEF and phenomapping => 3 aggregate overlapping phenotypes across studies

Clustered phenotypes but overlap => sub-phenotypes en sus

Future directions - Phenotyping and phenomapping studies in HFpEF

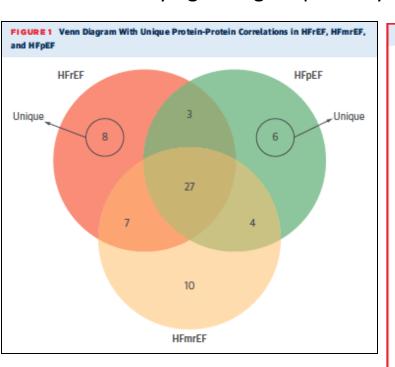
Optimization of phenomapping studies

- Utilization of derivation and external validation cohorts
- Incorporation of longitudinal data to study stages of disease vs unique subtypes
- Application of underutilized data elements such as invasive hemodynamics, exercise data, microvascular coronary pathology, and skeletal muscle physiology
- Expansion across a wider spectrum of LVEF in HF
- Utilization of prospective trial structures

Mechanistic and physiological translation

- Validation of proposed phenotypes through connection to mechanisms of disease in pathophysiological studies without statistical learning techniques
- Focusing animal model development on specific proposed phenotypes
- Basic/translational study (including multi-omics) of new patterns from phenomapping that might reveal novel mechanisms of HFpEF

Clinical trial investigation


- Continued investigation of hemodynamically-characterized phenotypes of HFpEF
- Further evaluation of targeted therapies for the obese/cardiometabolic phenotype of HFpEF
- A stronger evidence base remains necessary for direct application of phenomapped cohorts to clinical trial investigation

Potential for direct clinical application of phenotype directed therapy

HF and phenomapping using omics

BIOSTAT-CHF (BIOlogy Study to TAilored Treatment in Chronic Heart Failure)

Identifying biological pathways by using biomarkers

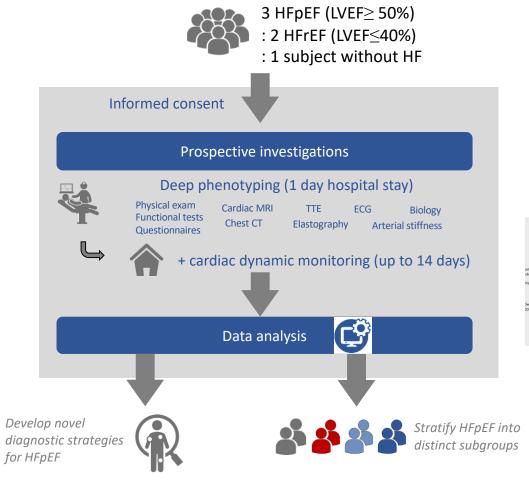
Olink Proseek Multiplex CVD III96X96 kit (Olink Proteomics)

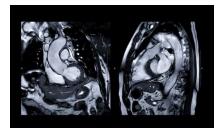
CENTRAL ILLUSTRATION Biomarkers in Heart Failure With a Reduced Versus Preserved Ejection Fraction **Heart Failure With a Heart Failure With a Preserved Ejection Fraction Reduced Ejection Fraction** Biological processes: **Biological processes:** Regulation of sequence-specific DNA Cell adhesion binding transcription Leukocyte migration Smooth muscle cell proliferation Inflammatory response Nitric oxide biosynthesis Neutrophil degranulation Integrin mediated signaling pathways Specific markers: Extracellular matrix organization AMP-dependent transcription factor activating transcription factor 2 Specific markers: • Integrin Subunit Beta 2 N-terminal pro-B-type natriuretic Catenin Beta 1 peptide Growth differentiation factor 15 (GDF-15) Interleukin 1 receptor-like 1

HF-rEF

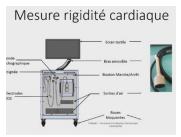
- cellular growth

Tromp, J. et al. J Am Coll Cardiol. 2018;72(10):1081-90.


- cardiac stress response
- métabolism


HF-pEF

- inflammation
- EC matrix


PACIFIC: data driven research project aiming at redefining and profiling HFpEF

Etude prospective (APHP / MEDICEN grant)

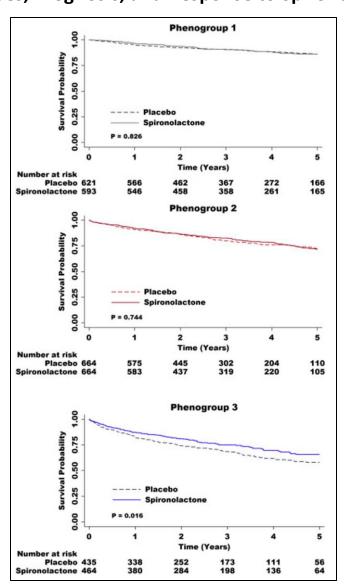
Linking to national health datahub (SNDS)

IC-FEP et phénotypage : quelles conséquences thérapeutiques?

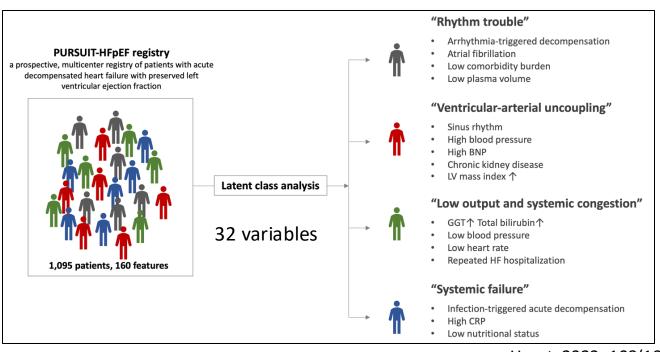
HFpEF, phenomapping and therapeutic consequences

Clinical Phenogroups in HFpEF: Detailed Phenotypes, Prognosis, and Response to Spironolactone

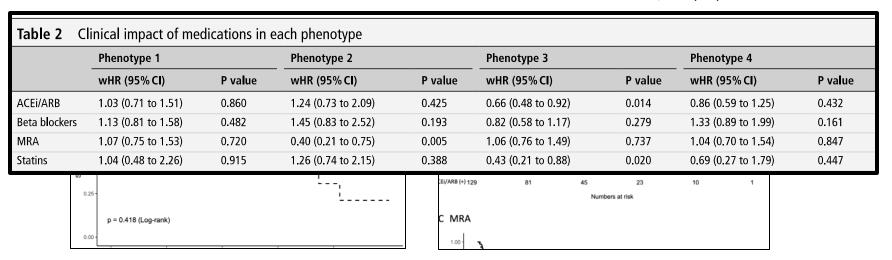
- · Normal LV geometry
- · Low arterial stiffness
- Low natriuretic peptides
- Markers of COPD (not genuine HFpEF?)
- Low event rate
- Preferentially enrolled in Russia/Georgia



- Concentric remodeling
- Very stiff arteries
- · LA enlargement and AF
- High natriuretric peptides
- · Innate immunity activation
- · High risk of primary endpoint



- Obesity/Diabetes
- Inflammation (TNF-α)
- Abnormal metabolism, liver and renal injury/dysfunction
- High renin
- · Highest risk of primary endpoint
- Preferential response to spironolactone


Cohen JB et al. JACC-HF 2020

HFpEF, clustering and therapeutic impact

Heart. 2022;108(19):1553-1561

CONCLUSION

- ☐ Traditional strategies for understanding pathophysiology and testing interventions in HFpEF as a single disease phenotype have proven challenging with modest efficacy results ☐ Phenomapping is a powerful statistical tool to identify (maybe) relevant phenotypes or clusters ☐ Clinical usefulness of such phenomapping: not validated so far... ☐ Issues: overlap of phenotypes and subtypes, many important variables currently not taken into account ... Perspectives
- Refinement with more (relevant) variables (hemodynamics?, omics?)
- Clinical trials based on certain phenotypes (ex: REDUCE-LAP2, STEP-HF...)
- Extension of indications for treatments already validated elsewhere